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Abstract. The Bell–Steinberger relation is analyzed. The questionable points of the standard derivation
of this relation are discussed. It is shown that the use of a more accurate approximation than the one
usually used in the derivation of this relation can lead to corrections to the right hand side of the standard
Bell–Steinberger relation.

1 Introduction

The Bell–Steinberger (BS) unitary relation [1,2] is con-
sidered as a very useful and effective tool in searching for
properties of the K0,K0 subsystem [3–15]. Some tests of
the fundamental CPT -and T -invariance [16] are based on
the BS relation [3,5,6,10–15]. The BS relation holds in
the approximate Lee–Oehme–Yang (LOY) theory of time
evolution in the neutral kaon subsystem [17–21], which
follows from the Weisskopf–Wigner (WW) approximation
[22]. Khalfin [8,9] has shown that the BS relation in its
original form is not true in the exact theory. A similar
conclusion can be drawn from the result contained in [23].
This means that the interpretation of the results of all the
tests in the neutral kaon subsystem, which are based on
the BS relation, cannot be considered as ultimate. The
proper interpretation of such tests is impossible without a
detailed investigation of the weak points of this relation.

The original (standard) form of the BS relation is the
following:[

γs + γl

2
− i(ms −ml)

]
〈s|l〉 =

∑
F

〈F |T |s〉∗〈F |T |l〉. (1)

The derivation of this relation in such form is possible
if the transition operator T exists [1,2]. It is assumed
there that the operator T describes transitions from states
belonging to the subspace, say H||, of states of neutral
kaons into the subspace of their decay products, H⊥. Here
|l〉, |s〉 ∈ H||, |F 〉 ∈ H⊥ and {|F 〉} forms a complete or-
thonormal set in H⊥. The Hilbert space H = H||

⊕
H⊥

is the state space of the total system under consideration.
The vectors |l〉, |s〉 are the normalized eigenvectors of the
effective Hamiltonian, H||, for the neutral K mesons com-
plex, for the eigenvalues µl(s) = ml(s)− i

2γl(s) respectively,

H|||l(s)〉 = µl(s)|l(s)〉. (2)
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We have

|l〉 = Nl(pl|1〉 − ql|2〉), |s〉 = Ns(ps|1〉 + qs|2〉). (3)

Here |1〉 stands for vectors of the |K0〉, |B0〉, |n〉 (for
neutrons) type et cetera, and |2〉 denotes antiparticles of
the particle “1”: |K0〉, |B0〉, |n〉, and so on, 〈j|k〉 = δjk,
j, k = 1, 2.

The linear operator H|| is the (2 × 2) non-hermitian
matrix,

H‖ ≡
(
h11 h12

h21 h22

)
= M − i

2
Γ, (4)

(where M = M+ is the mass matrix and

Γ = Γ+ ≡ i(H|| −H+
|| ) (5)

denotes the decay matrix), acting in H||. The operators
M and Γ are linear. From (5) and (4) one finds that

Γjk = i(hjk − h∗
kj) (j, k = 1, 2). (6)

2 Derivation of the standard
Bell–Steinberger relation

In deriving the relation (1) one usually invokes the prob-
ability conservation [1,2]. Probability conservation means
that for every vector |ψ; t〉 ∈ H solving the Schrödinger
equation

i
∂

∂t
|ψ; t〉 = H|ψ; t〉, (7)

one has
|| |ψ; t〉 ||2 = 1, (8)

for every t. In the case considered the condition (8) can
be rewritten as follows:

|| |ψ; t〉|| ||2 + || |ψ; t〉⊥ ||2 = 1, (9)
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where

|ψ; t〉||
def= P |ψ; t〉 ∈ H||, |ψ; t〉⊥

def= Q|ψ; t〉 ∈ H⊥, (10)

and P is the projection operator onto the subspace H||:

P ≡ |1〉〈1| + |2〉〈2|, (11)

Q is the projection operator onto the subspace of decay
products H⊥, Q ≡ I − P .

The initial condition for the Eq. (7) for the problem
considered is

|ψ〉 def= |ψ; t = 0〉 ≡ P |ψ〉 def= |ψ〉|| ∈ H||. (12)

From (9) it follows that

− ∂

∂t
|| |ψ; t〉|| ||2 =

∂

∂t
|| |ψ; t〉⊥ ||2, (13)

Using this relation one usually assumes that its right hand
side can be identified with the following expression:

∂

∂t
|| |ψ; t〉⊥ ||2 (?)

=
∑
F

(〈F |T |ψ; t〉||)∗ 〈F |T |ψ; t〉||, (14)

and thus, without proving if (or when) the relation (14) is
true, one finds that

− ∂

∂t
|| |ψ; t〉|| ||2 ≡

∑
F

(〈F |T |ψ; t〉||)∗ 〈F |T |ψ; t〉||, (15)

which leads to original BS formula (1). Indeed, following
[1] and inserting

|ψ; t〉|| = x e−itµl |l〉 + y e−itµs |s〉, (16)

into (15) (where x, y are arbitrary time-independent num-
ber coefficients), and differentiating with respect to t the
left hand side of the relation (15) and then putting t = 0,
one obtains all the relations derived in [1]. Of course such
a derivation is possible if µl, µs do not depend on time t.

Note that such a method of derivation of the BS re-
lation (1) cannot be considered as rigorous and correct.
Namely, it requires the existence of the transition opera-
tor T for the particles under study. Next, the decay of the
states under investigation must be described by the expo-
nential function of time t for all times t. Such an assump-
tion is not consistent with the fundamental properties of
quantum evolution. From the properties of solutions of
the Schrödinger equation and from the basic principles of
quantum theory it follows that the decay process cannot
be exponential for times t → 0 and for times t → ∞ [24].
What is more, in [25] it was shown that the CPT theo-
rem of axiomatic quantum field theory is not valid in a
system containing exponentially decaying particles. This
means simply that the BS relation (1) derived in such a
way cannot be used for designing CPT -violation tests.

The last weak point of this derivation of the relation
(1) is the following inconsistency. Using the Schrödinger
equation it is not difficult to verify that

∂

∂t
|| |ψ; t〉|| ||2

∣∣∣∣
t=0

≡ 0, (17)

for the arbitrary initial condition |ψ〉 ∈ H. Thus the rela-
tion (15) takes the following form at t = 0:

− ∂

∂t
|| |ψ; t〉|| ||2

∣∣∣∣
t=0

≡ 0

=
∑
F

(〈F |T |ψ〉||)∗ 〈F |T |ψ〉|| �= 0. (18)

So the left hand side of the relation (1) equals zero whereas
the right hand side of this relation is non-zero at t = 0.
The conclusion is that one should be very careful using
the original BS relation (1) as a tool for searching for
properties of the neutral kaon and similar complexes.

In the original form of the BS relation, [1–15], the vec-
tors |l〉 and |s〉 are understood as the eigenvectors for the
LOY effective Hamiltonian, HLOY. That is, H|| ≡ HLOY
in such a case.

3 Approximate effective Hamiltonians
and the BS relation

In many papers the observation was made that in order
to obtain the left hand side of the BS relation (1) one
need not use the method based on the relations (14)–(16).
It appears that the equivalent relation can be derived di-
rectly from the eigenvalue equation (2) (see, e.g., [12–14,
18] ). Indeed, directly from (2) one finds

[
γs + γl

2
− i(ms −ml)

]
〈s|l〉 = 〈s|Γ |l〉, (19)

which within the LOY approximation is equivalent to (1).
This method of the derivation of the BS relation is free

of the above mentioned inconsistencies. It has an advan-
tage over the original one [1,2] because one does not make
use of the transition matrix T . Simply, the assumption
about the existence of the T operator is unnecessary in
this case. It is a very important property of this method
because, in fact, the correct definition of the scattering
matrix, S ≡ I + iT , and thus the T -matrix, makes use of
asymptotic states. Such states do not exist for unstable
particles and K0,K0 mesons are unstable. What is more:
within this method one need not assume that the decay is
exponential.

The accuracy of the relation (19) is determined by the
accuracy of the approximation leading to the H|| used
there. If one inserts into the eigenvalue equation (2) the
effective Hamiltonian H|| ≡ HLOY, then one comes to the
picture equivalent to the original BS treatment of this
problem. On the other hand, if one uses the exact effective
Hamiltonian H|| then the relation (19) will not describe
the approximate one but it will describe the real proper-
ties of the system under consideration. The use of a more
accurate approximation for H|| than the LOY approxima-
tion in (2), and thus in (19), will lead to a description of
the system considered, which can be sensitive to possible
effects unreachable by means of the LOY method.
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The LOY effective Hamiltonian, HLOY, can be ex-
pressed in a compact form as follows [27]:

HLOY = m0P −Σ(m0) = MLOY − i
2
ΓLOY, (20)

where

Σ(ε) = PHQ
1

QHQ− ε− i0
QHP

= ΣR(ε) + iΣI(ε), (21)

and ΣR(ε = ε∗) = ΣR(ε = ε∗)+, ΣI(ε = ε∗) = ΣI(ε =
ε∗)+. The operator ΣI(ε) we are especially interested in
has the following form:

ΣI(ε) ≡ πPHQδ(QHQ− ε)QHP. (22)

Within the LOY approach the vectors |1〉, |2〉 are nor-
malized eigenstates of the free Hamiltonian, H(0) (here
H ≡ H(0) + HI is the total Hamiltonian of the system
considered), for a 2-fold degenerate eigenvalue m0:

H(0)|j〉 = m0|j〉 (j = 1, 2). (23)

HI denotes the interaction which is responsible for the
decay process.

From (20) one finds that

ΓLOY = 2ΣI(m0), (24)

which means that

ΓLOY
jk = 2π〈j|HQδ(QHQ−m0)QH|k〉, (25)

≡ π
∑
F

δ(EF −m0)〈j|PH|F 〉〈F |HP |k〉, (26)

where j, k = 1, 2, H|F 〉 = EF |F 〉 and
∑

F |F 〉〈F | ≡ Q. So
within the LOY approximation using (26) one finds that
in the CPT -invariant system the right hand side of the
relation (19) takes the following form:

〈s|ΓLOY|l〉 = 2〈s|ΣI(m0)|l〉 (27)

≡ 2π
∑
F

δ(EF −m0)〈F |HP |s〉∗ 〈F |HP |l〉. (28)

This is the standard picture which one meets in the liter-
ature. Note that this expression coincides with the right
hand side of (1).

Now, if one uses the exact H|| instead of the approxi-
mate HLOY in the relation (19) then one can expect that
the right hand side of the BS relation (19) will differ from
(28). The exact effective Hamiltonian H|| is time depen-
dent [2,23,25–34], H|| = H||(t), in the non-trivial case,
and can be expressed as follows [23,25–34]:

H|| = PHP + V||(t), (29)

where the non-hermitian operator V||(t) has the following
property:

V||(t = 0) ≡ 0. (30)

(The “non-trivial case” is understood here as the [P,H] �=
0 case.) In the non-trivial case the property that the ef-
fective Hamiltonian depends on time, H|| = H||(t), has
the following consequence: In a CPT -invariant but CP -
non-invariant system the diagonal matrix elements hjj

(j = 1, 2), cannot be equal for t > 0 [23] and all coef-
ficients ps, pl, qs, . . . appearing in the formula (3) are dif-
ferent and time dependent [8,9,26]. The same is true for
the eigenvalues µl, µs.

From (29) it follows that the matrix Γ can be expressed
as follows:

Γ ≡ Γ (t) = i
(
V||(t) − (V||(t))+

)
. (31)

So, the relation (30) means that in the exact case Γ (t =
0) = 0. From this property and from the properties of
the eigenvectors |l〉 = |lt〉 and |s〉 = |st〉 [26,34] one con-
cludes that at the initial instant t = 0 the BS relation
(19) becomes trivial: 0 = 0. It contrasts with the relation
(18) and it is consistent with the basic assumptions of
quantum theory. This is the simplest general conclusion
which can be obtained for the exact case. For the consid-
ered models of interactions leading to the decay of K0,K0
mesons it is practically impossible to calculate the exact
effective Hamiltonian H||. Nevertheless, one can study the
BS relation using the more accurate approximate effective
Hamiltonians H|| than HLOY and thus one can look for
possible deviations from the standard (i.e., LOY) picture.
An example of the H||, more accurate than HLOY, is given
in [25–29].

The approximate formulae for H‖(t) have been derived
there using the Krolikowski–Rzewuski (KR) equation for
the projection of a state vector [35], which results from
the Schrödinger equation (7) for the total system under
consideration, and, in the case of initial conditions of the
type (12), takes the following form:(

i
∂

∂t
− PHP

)
U‖(t)|ψ〉||

= −i
∫ ∞

0
K(t− τ)U‖(τ)|ψ〉||dτ, (32)

where U‖(0) = P , and U||(t) is the evolution operator for
the subspace H||,

K(t) = Θ(t)PHQ exp(−itQHQ)QHP, (33)

and Θ(t) = {1 for t ≥ 0, 0 for t < 0}.
The integro-differential equation (32) is equivalent to

the following differential one [30–35]:(
i
∂

∂t
−H||(t)

)
U‖(t)|ψ〉|| = 0, (34)

where the effective Hamiltonian H||(t) has the form (29).
Taking into account (32), (34) and (29) one finds from
(32)

V‖(t)U‖(t) = −i
∫ ∞

0
K(t− τ)U‖(τ)dτ. (35)

This relation can be used to obtain the approximate for-
mula for V||(t). From (35) one finds to the lowest non-
trivial order [26,33]
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V‖(t) ∼= V
(1)
‖ (t)

def= −i
∫ ∞

0
K(t− τ) exp [i(t− τ)PHP ]dτ. (36)

The use of P defined by the relation (11) leads to [27,28]

V||(t) = −1
2
Ξ(H0 + κ; t)

[(
1 − H0

κ

)
P +

1
κ
PHP

]

−1
2
Ξ(H0 − κ; t)

[(
1 +

H0

κ

)
P − 1

κ
PHP

]
,

(37)

where

H0 =
1
2
(H11 +H22),

κ =

√
|H12|2 +

1
4
(H11 −H22)2, (38)

and

Hjk = 〈j|H|k〉 (j, k = 1, 2), (39)

Ξ(x; t) def= PHQ
e−it(QHQ−x) − 1

QHQ− x
QHP. (40)

Note that V‖(t) ∼= V
(1)
‖ (t) = 0 at t = 0, which agrees

with the general property of the exact H||(t) and V||(t)
(see (30)). The expression (37) leads by (31) to a very
complicated form of Γ (t). Such a form of Γ is very hard
to compare with ΓLOY and thus to relate it to the right
hand side of the original BS relation (1). The form (37) of
V||(t) becomes simpler when

κ 
 H0, (41)

because then

Ξ(H0 ± κ; t) � Ξ(H0; t) ± κ
∂Ξ(x; t)
∂x

∣∣∣∣
x=H0

+ . . . (42)

So, if the condition (41) holds, then

V||(t) � − Ξ(H0; t) − ∂Ξ(x; t)
∂x

∣∣∣∣
x=H0

(PHP −H0P ) + . . .

(43)

(Note that due to the presence of resonance terms the sec-
ond term on the right hand side of the above expression,
that is ∂Ξ(x;t)

∂x , need not be small). This last expression
is simpler than (37) but it also leads to a time depen-
dent Γ and thus 〈s|Γ (t)|l〉. Such a 〈s|Γ (t)|l〉 cannot be
compared with the BS relation (1), which is applied for
asymptotic times t → ∞. One needs V||(t) for times t
which are at least of the order of the lifetimes, τl, τs for
states |l〉, |s〉, that is for t ∼ τl. It can be achieved using
V||

def= limt→∞ V
(1)
|| (t) instead of (37). We have

lim
t→∞ Ξ(x; t) = Σ(x). (44)

Thus

V||
def= lim

t→∞V
(1)
|| (t)

= −1
2
Σ(H0 + κ)

[(
1 − H0

κ

)
P +

1
κ
PHP

]

−1
2
Σ(H0 − κ)

[(
1 +

H0

κ

)
P − 1

κ
PHP

]
. (45)

To realize the purpose of this paper it is sufficient to
consider the case (41). So, if condition (41) holds then

Σ(H0 ± κ) � Σ(H0) ± κ
∂Σ(x)
∂x

∣∣∣∣
x=H0

+ . . . (46)

which, by (45), yields

V|| � −Σ(H0) − ∂Σ(x)
∂x

∣∣∣∣
x=H0

(PHP − H0 P ) + . . . .

(47)
Thus, taking into account (24), (29) and (31), one finds
that if the condition (41) holds, then

Γ ≡ Γ (0) + ∆Γ, (48)

where
Γ (0) = 2ΣI(H0), (49)

and

∆Γ = − i
[
∂Σ(x)
∂x

∣∣∣∣
x=H0

(PHP − H0 P )

− (PHP −H0 P )
(
∂Σ(x)
∂x

)+
∣∣∣∣∣
x=H0

]
. (50)

Thus in this case

〈s|Γ |l〉 � 〈s|Γ (0)|l〉 + 〈s|∆Γ |l〉, (51)

which evidently differs from (27).
Note that all the above discussed expressions (37)–

(50) have been derived without assuming any symmetries
of the type CP , T , or CPT for the total Hamiltonian
H of the system considered. Now let us assume that the
CPT -symmetry is conserved, that is

[Θ,H] = 0, (52)

where Θ is the antiunitary operator: Θ def= CPT and C
denotes the charge conjugation, P is the space inversion
(parity) and T the time reversal transformation. Let us
assume also that the subspace of neutral kaons H‖ is in-
variant under Θ:

[Θ,P ] = 0. (53)

When these two last assumptions hold then H11 = H22,
κ ≡ |H12| and H0 ≡ H11 ≡ H22 and also Σ11(ε = ε∗) ≡
Σ22(ε = ε∗) def= Σ0(ε = ε∗). So, when the total system
is CPT -invariant all the expressions for the approximate
V||(t), (37) and (43), V||, (45) and (47), and Γ, Γ (0), (49)
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and (50), become simpler. It is very important that this
approximate V|| leads to an effective Hamiltonian H|| pos-
sessing properties consistent with the properties of the ex-
act effective Hamiltonian: Analogously to the properties
of the exact effective Hamiltonian [23] its diagonal matrix
elements are not equal if the total system under consider-
ation is CPT -invariant but CP -non-invariant [25,26,34].
This property is absent in the LOY approximation and
therefore the approach based on the LOY effective Hamil-
tonian is unable to reflect correctly all the properties of
the real system. So the description of the properties of the
K0,K0 complex within the use of the above described ap-
proximation based on the KR equation should lead to a
more realistic picture of the behavior of this complex than
that given by the LOY and related approaches.

In the case of preserved CPT -symmetry, i.e., when the
conditions (52) and (53) hold, one can identify H0 appear-
ing in (49) with m0 from the formula (24): H0 ≡ m0. This
means that when the total system preserves CPT sym-
metry and the condition (41) holds, then

Γ (0) ≡ ΓLOY. (54)

Note that in this case still ∆Γ �= 0 (see (50)). Therefore
one again finds that

〈s|Γ |l〉 � 〈s|Γ (0)|l〉 + 〈s|∆Γ |l〉
≡ 〈s|ΓLOY|l〉 + 〈s|∆Γ |l〉
�= 〈s|ΓLOY|l〉. (55)

One observes from (43) and (47) (or (50)) that if the
total Hamiltonian H has the following property:

PHP ≡ H0 P, (56)

then simply
V|| = −Σ(H0), (57)

and ∆Γ ≡ 0. So, in such a case

Γ ≡ ΓLOY, (58)

and H|| ≡ HLOY.
The solution of the condition (56) is simple:

H12 = H21 = 0. (59)

This means (by (39)) that if the first order |∆S| = 2
transitions do not occur in the K0,K0 complex then the
BS relation (19) with Γ ≡ ΓLOY and with Γ given by
(31) and (48) coincide. This also means that the original
BS relation should not be used for designing, e.g., tests
verifying the existence of such interactions.

4 Final remarks

Note that from the relation (28), using the Schwartz in-
equality, the conclusion of the following type is drawn
in the literature (see [1,18] and also see (6.85) in [7], et
cetera):

|〈s|Γ |l〉|2 ≡ |π
∑
F

δ(EF −m0)〈F |HP |s〉∗ 〈F |HP |l〉|2

≤ π
∑
F

δ(EF −m0)〈F |HP |s〉∗ 〈F |HP |s〉

× π
∑
F

δ(EF −m0)〈F |HP |l〉∗ 〈F |HP |l〉.

(60)

This inequality is interpreted as follows:

|〈s|Γ |l〉|2 ≤ Γs Γl, (61)

where the decay widths Γs, Γl are identified with

Γl(s) = π
∑
F

δ(EF −m0)〈F |HP |l(s)〉∗ 〈F |HP |l(s)〉.

(62)
The inequality (61) together with the BS relation (19)
is used, e.g., to estimate the product |〈s|l〉| (see e.g., [1,
7,18]). In the light of the relations (48) and (55) such
estimations and similar conclusions can be considered as
consistent with the real properties of the system under
investigation only if we would have Γ ≡ ΓLOY.

Note that the inequality (60) need not be true in the
case when the relation (48) (or when the earlier expres-
sions for V||) holds. Then simply Γ �= ΓLOY. This means
that the estimations of type (61) need not be true in such
a case. So, keeping in mind the relations (48) and (55)
one should be very careful while considering the tests per-
formed in the K0,K0 complex within the use of the orig-
inal BS relations (1) (or (19), where Γ = ΓLOY) as the
crucial one.

On the other hand, due to the properties of the matrix
Γ (Γ is a linear and hermitian matrix) the expression
〈s|Γ |l〉 defines the hermitian form in the subspace H||.
Indeed, for every |φ〉, |ψ〉 ∈ H|| one can define

(φ, ψ) def= 〈ψ|Γ |φ〉. (63)

Now, if the matrix Γ is positive definite then the form (63)
is a positive definite hermitian form. It is not difficult to
verify that the form (φ, ψ) must then fulfill all the require-
ments of the scalar product. Therefore in this case for the
product (φ, ψ) the Schwartz inequality holds, which reads

|(φ, ψ)|2 ≤ (φ, φ) (ψ,ψ). (64)

Within the use of the definition (63) this inequality can
be rewritten as follows:

|〈ψ|Γ |φ〉|2 ≤ 〈ψ|Γ |ψ〉 〈φ|Γ |φ〉. (65)

This inequality is true for every |ψ〉, |φ〉 ∈ H|| only if Γ is
positive definite.

Now if the eigenvectors |s〉, |l〉 of H|| are inserted into
(65) then one can find that

|〈s|Γ |l〉|2 ≤ 〈s|Γ |s〉 〈l|Γ |l〉. (66)

Thus, using the eigenvalue equation (2) for H|| and the
relation (5) one can conclude that

|〈s|Γ |l〉|2 ≤ γs γl. (67)
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One should stress that γs, γl appearing in this inequality
are determined by the solutions of the eigenvalue problem
for H||, but not by the relations (25), (26) or (62).

Unfortunately there has not been published any rig-
orous proof that the exact Γ should be positive definite.
This is only a supposition following from the assumption
that a decay process is considered and therefore suitable
transition probabilities should be decreasing functions of
time t and they should vanish for t → ∞. What is more,
Γ can be positive definite only if all such transition prob-
abilities are monotically decreasing functions of t, which
needs not be true in the general case. Of course Γ calcu-
lated within the LOY approximation is positive definite,
but such a property of the LOY effective Hamiltonian can-
not be considered as a general rigorous proof for the exact
case. So the inequality (64) (and therefore the inequalities
(65)–(67)) cannot be considered as definitely valid. What
is more, there exist reasons leading to the conclusion that
the matrix ∆Γ defined by the formula (50) is not pos-
itive and thus the matrix Γ connected with ∆Γ by the
relation (48) need not be positive definite. Such a conclu-
sion follows from the generalized Fridrichs–Lee model [36]
and calculations performed in [26,25]. Results obtained
there lead to the following form of Γ = ΓFL in the CPT -
invariant case:

ΓFL ≡
(
γ11 γ12

γ21 γ22

)
= Γ (0) +∆γ, (68)

where Γ (0) = ΓLOY, γjk = ΓLOY
jk +∆γjk (j, k = 1, 2) and

∆γ11 = ∆γ22 = −1
2


 (m21Γ
LOY
12 )

m0 − µ
, (69)

∆γ12 = (∆γ21)∗ = −1
4

m12

m0 − µ
(ΓLOY

11 + ΓLOY
22 )

≡ −1
2

m12

m0 − µ
ΓLOY

0 ; (70)


 (z) denotes the real part of z, mjk ≡ Hjk (j, k = 1, 2),
m0 ≡ H11 = H22, ΓLOY

0 ≡ ΓLOY
11 = ΓLOY

22 and µ de-
notes the mass of the decay products. The last formula
was obtained assuming that |m12| ≡ |H12| 
 (m0 − µ).

Let us to assume for a moment that the order of the
factor 1

2
|m12|
m0−µ ≡ 1

2
|〈1|HI|2〉|

m0−µ appearing in (69) and (70)
is the same as the ratio of a typical matrix element of
HI ≡ HWeak versus that of HStrong ≡ H(0); then (see [19],
p. 352, (15.47))

1
2

|〈1|HI|2〉|
m0 − µ

∼ 1
2
HWeak

HStrong
∼ 1

2
GFm

2
p

4π
∼ 10−7, (71)

where GF is the Fermi constant; we have natural units,
� = c = 1, and mp is the mass of the proton. Thus one
finds

|∆γ12| ∼ 10−7 ΓLOY
0 , (72)

and

|∆γ11| ≤ 1
2

|m12|
m0 − µ

|ΓLOY
12 | ∼ 10−7|ΓLOY

12 |. (73)

Note that the above estimations are rather unrealistic be-
cause, in fact, the weak interactions,HWeak, cannot induce
first order |∆S| = 2 transitions in neutral kaon and similar
complexes. So, we should have 〈1|HI|2〉 = 0 in the case of
HI = HWeak. More realistic estimations one obtains tak-
ing HI ≡ HSW, where HSW denotes the hypothetical su-
perweak interactions [19,37,38]. For such interactions the
first order |∆S| = 2 transitions are allowed in the K0,K0
subsystem, that is, possibly 〈1|HI|2〉 = 〈1|HSW|2〉 �= 0.
So one needs the estimation of the ratio HSW

HStrong
instead

of HWeak
HStrong

. Such an estimation can be found replacing
GF in (71) by GSW = gGF, where, according to [37,38],
g ∼ 10−10 ÷ 10−11. This yields

|∆γ12| ∼ 10−17 ΓLOY
0 , |∆γ11| ≤ 10−17|ΓLOY

12 | (74)

instead of (72) and (73). These estimations show that pos-
sible deviations from the LOY predictions are much too
small to be observed with the present experiments. Nev-
ertheless such deviations exist and lead to the non-zero
effects of type (50), (69) and (70).

One of the Sylvester theorems states that a symmetric
matrix defines a positive defined bilinear hermitian form if
and only if all its angular minor determinants are positive
(see, e.g., [39]). So, from the Sylvester theorem it follows
that the matrix ∆γ can be positive definite if and only if
∆γ11 > 0 and det∆γ > 0 hold. We have

det∆γ =
1
16

1
(m0 − µ)2

×
[
4
(


(
m21 Γ

LOY
12

))2 − |m12|2
(
ΓLOY

11 + ΓLOY
22

)2]

≡ 1
4

|m12|2
(m0 − µ)2

[(


(
m21

|m12|
ΓLOY

12

))2

− (ΓLOY
0 )2

]
, (75)

in the case considered. Now if we assume that ΓLOY

is positive definite, which is equivalent to the assump-
tions that |ΓLOY

12 |2 ≤ ΓLOY
11 ΓLOY

22 and ΓLOY
11 > 0, then

det ∆γ ≤ 0. So, if in this case Γ (0) = ΓLOY is positive
definite, then the matrix ∆γ cannot be positive definite.
Therefore the matrix ΓFL = Γ (0) +∆γ need not be posi-
tive definite even in the case of ∆γjk (j, k = 1, 2) given by
the estimation (74). This means that in such a model the
hermitian form (63) need not fulfill the requirements of
the scalar product and thus inequalities of type (64)–(67)
cannot be considered as definitely valid.

Similar considerations lead to the conclusion that in
the general case (50), the matrix ∆Γ need not be positive.
Thus inequalities of type (64)–(67) may not be valid in the
case of the relation (48).

From the above considerations the following conclu-
sions follow.

If searching for the properties of neutral kaon and sim-
ilar complexes one is going to use the estimations of type
(67), one always should verify whether the matrix Γ is
positive definite or not. The inequality (67) is true only
for positive definite Γ . Of course, one always expects and
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assumes that Γ should be positive defined. Nevertheless
we should remember that our assumptions or expectations
can never replace an inspection or a rigorous proof.

From the relations (68)–(75) it follows that if there ex-
ist interactions in the system considered leading to matrix
elements 〈1|H|2〉 �= 0, that is, if there exist interactions
allowing for the first order |∆S| = 2 transitions, then the
matrix Γ calculated within the more accurate approxima-
tion than HLOY need not be positive definite. This means
that in such a case conclusions following from the inequal-
ity of type (67) cannot be considered as ultimate. The
same concerns tests for the existence of such interactions
based on this inequality.

The standard derivation of the BS relation makes es-
sential use of the assumption of the exponential form of the
decay law of the neutral kaons. As it was mentioned earlier
such an assumption [25] and other inconsistencies of this
derivation are the cause that all tests of CPT -invariance
based on the BS relation (1) cannot be considered as cru-
cial.

Note that the BS relation (19) and the inequality (67)
only contains quantities appearing in the eigenvalue equa-
tions (2) for the effective Hamiltonian H||. Therefore one
can assume that the real properties of the subsystems con-
sidered (like the neutral kaon complex, et cetera), will be
described by solutions of the eigenvalue problem for the
exact H||. In other words, the result (67) means that one
can expect the following. Estimations of parameters de-
scribing the neutral kaon complex performed within the
use of the BS relation (19) and the inequality (67) de-
scribe real properties of this complex only if the quantities,
which one inserts there, are extracted directly from the
experiments and the positivity of Γ is rigorously proved.
Of course these experiments must be designed in such a
manner that the interpretation of the results of these tests
is independent of the approximation used to describe the
system under investigations. This means that, e.g., the
parameters of the type γs, γl or Γl(s), Γjk, cannot be ex-
tracted using the relations of the type (62). If one is unable
to realize the test in such a manner then the interpreta-
tion of its results based on the BS relation (19) need not
reflect the real properties of the system under investiga-
tion. There is the following reason for such a conclusion.
Simply comparing the form of the formulae (25), (26) and
(62) with expressions (45), (48) and (50) obtained within
the more accurate approximation one finds that the real
structure of the processes and interactions in the subsys-
tem under investigation can be more complicated than it
follows from the standard formulae (25), (26) and (62).
All this has an effect on the real, measurable values of
parameters describing the considered system. The BS re-
lation in its original form (1) and also the LOY treatment
of this problem are unable to correctly reflect all compli-
cated processes of this kind.
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